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Abstract: Practitioners of agent-based modeling are often tasked to 
model or design self-organizing systems while the theoretical foundation 
of self-organization in science remains to be set. This paper explores 
self-organization in the context of an agent-based model of ant colony 
food foraging. We gather specific measures of order-creation and 
constraint construction particular to leading theories of nonequilibrium 
thermodynamics that purport to govern self-organizing dynamics. These 
measures are used to explore three claims: (a) Constraints are 
constructed from entropy-producing processes in the bootstrapping 
phase of self-organizing systems; (b) positive feedback loops are critical 
in the structure formation phase; and (c) constraints tend to decay. The 
continued presence of far-from-equilibrium boundary conditions are 
required to reinforce constraints in the maintenance phase. 
 
Key Words: constraint, self-organization, entropy, ant simulation, agent-
based modeling. 

 
INTRODUCTION 

 
Most agent researchers study organization of one type or 

another. Example organizations of scientific interest include Rayleigh-
Bénard convection, lasers, cellular slime molds, immune systems, 
genetic regulatory networks, neural systems and insect colonies. 
Organizations of more commercial interest include firms, supply chains, 
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financial markets, transportation systems, manufacturing production lines 
and IT systems. Despite the difference of detail in modeling domains, 
agent researchers share a common goal of understanding how the 
coordination of semi-autonomous components of a nonlinear dynamical 
system may spontaneously emerge as a system moves toward global 
attractor states. (Ashby, 1957; Haken, 2000; Kauffman, 1993; Kelso, 
1995; Kugler & Turvey, 1987; Prigogine, 1984). 

The increasing variety of agent-based modeling (ABM) software 
toolsets (Gilbert & Bankes, 2002) and the accelerating availability of 
serious desktop computing power make modeling accessible to 
researchers with minimal investments in specialized programming skills 
and hardware expense. Nonetheless, Eric Bonabeau (2002) observes, 
“although ABM is technically simple, it is also conceptually deep. This 
unusual combination often leads to improper use of ABM” (p. 7280). 

Improper use is not entirely the fault of an uninformed 
practitioner. Core concepts in the field of ABM remain ill defined. For 
example, Physics, Biology, Chemistry, Cognitive Science, Economics, 
Sociology and Ecology all have substantial literature related to self-
organizing phenomena in their respective fields. However, despite their 
efforts as a collective enterprise, Science continues to lack a rigorous and 
generally accepted definition of “organization” (Kauffman, 2000, 2003; 
Rashevsky, 1960; Rosen, 1991). 

Promisingly, new (and not so new) theories claim to resolve 
fundamental issues of organization (Atkins, 1984; Brooks & Wiley, 
1986; Kauffman, 2000; Kugler & Turvey, 1987; Prigogine, 1962, 1984; 
Schneider and Kay, 1994; Swenson, 1989; Tsallis, 1998; Ulanowicz, 
1986). These somewhat overlapping theories seek to explain the 
emergence of organization as an expected consequence of driving 
constraints forcing systems far from thermodynamic equilibrium. Bill 
McKelvey (in press) offers a review of some of these theories and 
focuses on their strengths and weaknesses with respect to order-creation. 
Additionally, Francis Heylighen (2002) provides a good introduction to 
related concepts central to self-organization.  

In the past, the ABM community has borrowed liberally from 
Thermodynamics and Statistical Mechanics, two research methodologies 
in physics used to understand ensembles of interacting components. For 
example, it is common for researchers to talk in terms of the microscopic 
agent-level and the macroscopic system behavior (Bonabeau, 2002; 
Epstein & Axtell, 1996). As systems self-organize, changes in 
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macroscopic states are expressed in terms of phase transitions, 
correlation lengths, mean free paths and mean relaxation times 
(Kauffman, 1993, 1995, Kugler & Turvey, 1987; Swenson & Turvey, 
1991, Theraulaz et al, 2002).  

Mapping nonequilibrium thermodynamic concepts onto ABM 
may prove more tractable if we start with thin agent models. As a rough 
distinction, agent research can be separated into modeling that uses fat 
agents and modeling that uses thin agents. Fat agents typically have 
sophisticated internal reasoning, large memory and complex learning 
algorithms. Fat agent systems often have relatively few agents with some 
agents having access to global information aggregated from many agents 
or from a large portion of the interaction space. These agent systems can 
be said to characterize much of the work in Distributed Artificial 
Intelligence (DAI) and Multi-Agent Systems (MAS). Most of the 
complexity of the model is internal to individual agents making 
thermodynamic accounting difficult.  

Thin agents, by contrast, make decisions using simple rule bases 
and have limited to no memory. They perceive mostly local information 
in their spatial neighborhood and communicate with a few agents out of 
the possible agent population at any one time. The environment is often 
modeled explicitly as an active process and plays a significant role in 
model evolution (Parunak, 1997). Thin agents are typically associated 
with the modeling of complex adaptive systems and self-organizing 
systems. This approach can be said, albeit with some municipal hubris, to 
characterize the “Santa Fe Approach”. A common theme is that the 
emergent collective intelligence of complex adaptive systems resides not 
in complex individual abilities but rather in networks of agent-agent and 
agent-environment interactions. Our model of an ant colony constructing 
shortest paths to food sources is an example case. The ants as agents 
have extremely simple rules of gradient-following and pheromone 
dropping. No individual ant is capable of learning the location of the 
food source. Learning and intelligence takes place in the colony – 
environment system taken as a whole. 

An idea put forth in this paper is that agent-agent and agent-
environment interactions along with internal rules of agents can be 
considered forms of constraint. From our perspective, organization can 
be measured, in part, as a bundle of self-reinforcing and evolving 
constraints.  
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ORIGIN AND MAINTENANCE OF CONSTRAINT 
 
The intent of this paper is to take a few small steps in exploring 

some ideas common to the nonequilibrium thermodynamics models. 
Three claims of interest are: 

1. Constraints can be constructed from entropy-producing 
processes in the bootstrapping phase of self-organizing systems. 

2. Positive feedback loops are critical in the structure formation 
phase. 

3. Constraints tend to decay. The continued presence of far-
from-equilibrium boundary conditions are required to reinforce 
constraints in the maintenance phase. 

These three points relate to how systems may learn the structure 
of their environment. As will be demonstrated, learning can be measured 
as an increase of constraints that limit degrees of freedom of agents 
(Kugler & Turvey, 1987). Specifically, learning in ABM can occur 
through (a) changes in agent interaction patterns e.g. edge weighting in 
neural networks (Rumelhart & McClelland, 1986), (b) changes in agents’ 
internal rules, e.g. distributed classifier systems (Holland, 1995) or (c) 
changes to potential information stored in the environment, e.g. 
pheromone trail following in ant foraging systems (Bonabeau, Dorigo & 
Theraulaz, 1999).  Our model uses this last, stigmergic form of learning. 
However, these principles should equally apply to the first two forms of 
learning. 

  
EXPERIMENTAL SETUP 

 
The following simulation of food gathering ants is presented for 

the purpose of calculating statistical and thermodynamic measures that 
help characterize phases of self-organization. The spirit of this model is 
an extension of  the work of Parunak and Brueckner (2001) and Gutowitz 
(1993). 

The ant system described here is discrete; the positions of all 
objects in the system are specified by a 2-tuple of integers (x, y). The 
space of positions is a square grid. The three types of objects are nests, 
food, and ants. Ants and the environment are modeled as active agents in 
the simulation. Additionally, each position in the space can contain some 
amount of nest pheromone and food pheromone, which are deposited by 
the ants as they move. 
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A basic simulation is set up as follows: A nest and some amount 
of food are placed in the space. A fixed number of ants is initially placed 
at the nest. All positions have zero levels of both food and nest 
pheromones. The system evolves as the ants move, drop pheromone, and 
transport food. The model is flexible to later allow experimentation of 
initially placing ants at any location in the space and to allow any type of 
object (nests, food, ants) to be introduced at any time or position. 

An ant can hold one unit of food at a time and can take one of 
three actions: (a) move to one of eight adjacent locations (includes 
diagonal moves), (b) pick up a unit of food, and (c) drop a unit of food at 
a nest. The following pseudo-code describes what actions an ant will take 
on each time step: 

 
if ant has food then 
 drop one unit of food pheromone 
 if at nest then 
  drop food 
 else 
  follow nest pheromones 
 end if 
else 
 drop one unit of nest pheromone 
 if at food then 
  pick up food 
 else 
  follow food pheromones 
 end if 
end if 

 
Also, each time step some percentage of the pheromone present 

at each position “evaporates”, or is removed. Pheromone evaporation 
allows adaptation to changes in food location. For example, if there were 
two food sources present, A and B, and the ants were exploiting A for a 
period of time a strong trail of pheromones would be laid between the 
nest and A. Once the food at A is gone the ants should no longer follow 
that trail, but should rather explore again to find B. If the pheromones 
leading to A do not evaporate this cannot occur. The decay or forgetting 
of constructed constraints (pheromone trails) allows the system to be 
adaptive. 

The ants have directionality. They can only travel to their 
forward five positions instead of choosing from all eight adjacent 
positions. This local directionality is present regardless of the state of the 
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system and is an example of a context-free constraint (Juarrero, 1999). 
The direction of an ant is calculated after each step based on the previous 
and current positions. At time zero each ant chooses a random direction. 

 

 
 
Fig. 1. Examples of possible next steps (in gray) for an ant according to 
the last step taken. Ants have hard context-free constraints preventing 
backwards movement. 

 
Each time step ants measure a local gradient then choose a 

direction to step. Pheromone levels are read from the forward five 
positions. The probability of moving to position j is given by: 
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where µj is the pheromone level at position j; α is a scaling exponent; β 
is a random base; and the denominator represents the total pheromone 
level in all possible next positions. In this case N is five. The scaling 
exponent α increases the probability that the next position will be the one 
with the greatest pheromone level, whereas the random base β has the 
opposite effect. Typical values used in our experiments were α = 3, β = 
1, and a maximum pheromone level of 511 at any one position. These 
parameters can be adjusted to tune the likelihood that an ant will explore 
for new food versus exploiting a found food source.  

So, the  movement of an ant is constrained by a measure of 
change not an absolute strength. One can think of the gradient as the 
spatial first derivative of the pheromone field. 

Figure 2 graphically depicts four phases of the typical evolution 
of this ant system. In the next section, measures of constraint and spatial 
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entropy are defined as tools for examining the construction and 
destruction of constraints in this self-organizing system. 

 

 
Fig. 2. Typical evolution of the ant system. (a) Bootstrapping – Gradient 
Creation: Ants move randomly out from the nest, creating a gradient of 
nest pheromones. (b) Structure Formation: Some ants find the food and 
begin following the nest pheromones while dropping food pheromones 
that food-seeking ants begin to follow. (c) Structure Maintenance: A 
stable path of both food and nest pheromones is established. As shown 
in the upper-right corner, cycles that do not transport food can also form. 
(d) Re-exploration: Once all of the food has been transported to the nest 
the pheromones begin to evaporate and the ants disperse. 
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CONSTRAINT AND SPATIAL ENTROPY MEASURES 
 
As a system self-organizes, components of the system are 

expected to lose degrees of freedom through the emergence of context-
sensitive constraints (Juarrero, 1999). In this system, ants lose directional 
degrees of freedom as they are informed by a gradient. We measure this 
constraint in our model with a directional entropy. An ant that sees no 
pheromone gradient, which is an equal level of pheromone in all possible 
next positions, is said to be maximally ignorant and has an ignorance 
level of 1. An ant that has no choice but to move to one specific position 
on the next step would have an ignorance of 0, though this never occurs 
here because of the random base added to each pheromone level as 
described in Eq. 1. The Shannon entropy (Shannon, 1948a, 1948b) of the 
probabilities of moving to each of the possible positions on the next step 
defines the ignorance for each ant 
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where pn is the probability of moving to position n, and N is the number 
of possible next positions, in this case five. The denominator is used to 
normalize the value to the range [0,1]. The ignorance of a group of ants 
is defined as the average ignorance of all ants. 

As systems self-organize, statistical measures of order increase. 
In this model, we capture increased order with a spatial entropy measure 
applied to the positions of ants. The spatial entropy measure is also a 
Shannon entropy of the form shown in Eq. 2 where pn is the proportion 
of all ants at position n, and N is the total number of positions in the 
space. Note that in the case of zero ants being at a location 0 log 0 = 0. 
The maximum spatial entropy is achieved with an equal number of ants 
at each position and the minimum with all ants at a single location. 

 
EXPERIMENTAL RESULTS 

  
 The results presented here will be used to support the following 
three points. These points are model-specific restatements of the three 
ideas from nonequilibrium thermodynamics put forth earlier. 

1. In the bootstrapping phase of the ant model, an increase in 
spatial entropy leads to a decrease in the ignorance of the ants returning 
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to the nest. This increase in entropy enables later phases of structure 
formation and maintenance. 

2. Structure is created by a positive feedback loop of decreasing 
ant spatial entropy and increasing constraint (decreasing ignorance) on 
ant movement. A decrease in the former causes, and is caused by, an 
increase in the latter. 

3. The structure is dependent on the presence of sufficient 
amounts of food. The presence of a separated nest and concentrated food 
source can be seen as a far-from-equilibrium external constraint 
necessary for the maintenance of structure. 
 All results given here are based on an average over 20 runs with 
the same initial conditions. The space was 21 positions square, with a 
single nest at position (7,7), a single food source at position (15,15), and 
all ants starting at the nest.  
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Fig. 3. Relative population sizes of nest seeking and food seeking ants. 
As the system matures the population sizes reach equilibrium. 
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Fig. 4. The four phases of development are visible in this plot of the ants’ 
mean path length at each time step. A path length is calculated as the 
number of steps an ant has taken since it last picked up or dropped a 
unit of food. 
 
 As an example, Fig. 3 shows the number of food seeking and nest 
seeking ants averaged over 20 runs of a system with 60 ants, all starting 
at the nest, over 500 time steps. As would be expected, the number of 
each type of ant reaches equilibrium once a path between the nest and the 
food is established. 

An indicator of which phase the system is in (i.e. order 
parameter) could be the mean path length of the ants. The path length of 
an ant at a given time is defined as the number of steps it has taken since 
it last picked up or dropped a unit of food. Figure 4 shows the four 
phases of development with a plot of mean path length vs. time. In the 
bootstrap phase the mean path length increases uniformly. The line in 
this case has a slope of one because each ant takes one step per unit time 
and no ants have yet found food. The structure formation phase begins 
when food is found which leads to a rapid decrease in the mean path 
length. During the structure maintenance phase, mean path length 
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remains stable at a near minimum value (the shortest distance between 
the nest and food). When the food source is depleted, the mean path 
length again increases as the ants re-explore the space for alternative 
food sources. 
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Fig. 5. A comparison of the spatial entropy and ignorance of ants over 
time. In the bootstrapping – gradient creation phase the spatial entropy 
of the ants increases, which establishes a gradient of pheromones 
around the nest. In the structure formation phase the ignorance of the 
ants decreases as they find food and begin to follow the nest 
pheromones back. The spatial entropy of the ants also begins to 
decrease when a path is formed between the nest and food. The 
structure maintenance phase begins when the spatial entropy and 
ignorance of the ants becomes relatively constant. 
 

Figure 5 displays the spatial entropy and ignorance for all ants 
over the first 100 time steps of an experiment with an inexhaustible food 
source. The bootstrapping phase occurs over approximately the first 25 
time steps. In this phase, the ants’ random walk from the nest causes a 
rapid increase in spatial entropy and the establishment of a nest 
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pheromone gradient around the nest. In the structure formation phase 
ants that find food use this gradient to direct their return to the nest. The 
food-carrying ants’ constrained movement is reflected in a reduction of 
overall ant ignorance as the gradient informs them to the nest location.  

Increasing spatial entropy causally constraining ant movement is 
offered as an illustration of Point (1): Constraints can be constructed 
from entropy-producing processes in the bootstrapping phase of self-
organizing systems. This is also in agreement with Parunak and 
Brueckner’s (2001) findings. They describe  this effect as “coordination 
can arise through coupling the macro level (in which we desire agent 
self-organization with a concomitant decrease in entropy) to an entropy-
increasing process at a micro level” (p. 130). 
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Fig. 6. Ant spatial entropy and ignorance over time as greater amounts 
of food are injected into the system. The vertical lines represent points at 
which food is injected (always at the same location). Food is injected 
every 250 time steps, starting with 5 food units and doubling each time. 
Increased order arises with larger injections of food, as shown by the 
more pronounced decreases in entropy. 
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Fig. 7. Plot of ant spatial entropy vs. ignorance for the experiment shown 
in Fig. 6. A correlation coefficient of ρ=0.94 implies a link between the 
two. The rightmost outliers of high ignorance and low spatial entropy 
occur during the bootstrapping phase when ants leave the nest. The 
correlated points occur during the structure formation, structure 
maintenance, and re-exploration phases. 
 

Figure 6 demonstrates the dependence of the structure formation 
and structure maintenance phases on a food source. In this case, limited 
amounts of food are injected every 250 time steps, starting with 5 food 
units at time zero and doubling the amount of food added each interval. 
In the presence of a concentrated food source, structure is created as 
shown by the decreasing spatial entropy and decreasing ignorance of the 
ants. Once that food source is depleted the structure breaks up as the 
constraints on the ants’ movements (the pheromone field) gradually 
decay. This effect is offered as an illustration of Point (3): Constraints 
tend to decay. The continued presence of far-from-equilibrium boundary 
conditions are required to reinforce constraints in the maintenance phase. 
 

 



 
 
 
 
 
 
 
144                                     NDPLS, 8(2), Guerin 

There is a correlation between spatial entropy and ignorance in 
Fig 6. This correlation is due to the positive feedback loop between 
decreasing ant spatial entropy and increasing constraint on ant movement 
(decrease in ignorance). Figure 7 makes this correlation (ρ=0.94) more 
clear with a scatter plot of ant spatial entropy vs. ignorance. This 
relationship is put forth to illustrate Point (2): Positive feedback loops are 
critical to structure formation. 

The few uncorrelated points occur during the bootstrapping 
phase as spatial entropy is increasing while ignorance remains at its 
maximum value. 

 
SUMMARY 

 
Three claims from nonequilibrium thermodynamics were 

explored in the context of an ant foraging agent-based model: (1) 
Constraints can be constructed from entropy-producing processes, (2) 
Positive feedback loops are critical to structure formation, and (3)  The 
continued presence of far-from-equilibrium boundary conditions are 
required to reinforce internal constraints. We developed measures of 
constraint and order that illustrate these claims. 

These initial findings can be considered first steps in establishing 
mappings from nonequilibrium thermodynamics to ABM. Next steps 
could explore various cycles present in this model as they may relate to 
thermodynamic work cycles which are considered necessary for 
Kauffman’s Autonomous Agents (2000, 2003). Candidate cycles in this 
model include (1) ant movement cycles between nest and food sources, 
and (2) system cycling through the phases of bootstrapping, structure 
formation, maintenance and re-exploration.  
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