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Introduction 

We anticipate a theory of organization to generalize the common structuring processes 
present in Rayleigh-Bénard convection, lasers, cellular slime molds, immune systems, 
genetic regulatory networks, neural systems, and social insect systems. A robust theory 
should also apply to systems of more commercial interest including firms, supply webs, 
financial markets, transportation systems, manufacturing production lines and consumer 
markets. This paper explores how Kauffman’s Autonomous Agent might be used as a 
foundation for such a theory of organization and will use the context of a familiar 
computational model of an ant foraging system to demonstrate how the emergence and 
degradation of constraints simultaneously define the process of organization. 

An Autonomous Agent (Kauffman, 2000), in brief, is a collectively autocatalytic 
system performing one or more thermodynamic work cycles that: (1) measures useful 
displacements from equilibrium from which work can be extracted; (2) discovers devices 
to couple to those energy sources such that work can be extracted; and (3) applies work to 
develop constraints to extract further work. A primary task in examining a given 
organization is to undertand how the system is displaced from equilibrium and how work 
is extracted from these initial boundary conditions. This exercise is necessarily couched in 
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the language of thermodynamics and statistical physics. We are challenged to map this 
description not only to physically organizing systems, but to biological, social and 
computational instances of organization as well. Our aim is to make the mapping without 
the crutch of metaphor. We will appropriate the language and methods of statistical 
thermodynamics through the generalization of the thermodynamic processes of heat and 
work for definition in non-physical systems. Taking guidance from Atkins (1984), we can 
understand heat to be the unconstrained transfer of energy and its complement, work, to 
be the constrained transfer of energy. More generally, we might consider heat and work to 
be unconstrained and constrained processes. Consider a purely physical system where 
work was performed to create an initial concentration of a conserved quantity (eg. energy, 
mass, charge, linear momentum, angular momentum, etc.) in space. A diffusion process 
from thermal agitation can spontaneously arise to move the system to equilibrium absent 
constraint. This process of the unconstrained transfer of a conserved quanitity is a heat 
process. Consider an alternative equivalent system comprised of a conserved quantity of 
computational entities (agents) performing a random walk in space. Beyond analogy, it is 
generally accepted that this agent system generates equivalent macroscopic dynamics that 
diffuse an average distance that scales with t . In the ant model to be described below, 
the initial diffusion of random ant movement from a nest source is such a process — We 
describe this as a heat process in a non-physical system. 

To consider non-physical representations of work, one can enumerate the degrees 
of freedom that characterize an agent’s behavioral repertoire. In the ant model, an ant can 
potentially move to 8 neighboring spaces. Degrees of freedom are removed as an ant is 
informed by a pheromone gradient. As the ant movement is constrained by the pheromone 
field, we propose the idea that work is being done on the ant by the ant-pheromone field 
interaction. 

Figure 1 depicts four phases of the typical evolution of the ant foraging model.  It 
is an extension of the work of Guerin and Kunkle (2004) in which a simple agent-based 
model was constructed and the processes leading to structure formation, structure 
maintenance, and structure decay were studied. It was found that these three features—
commonly observed in complex system agent-based models— could be explained in 
terms of ideas from equilibrium and non-equilibrium thermodynamics. For example, when 
a system forms an organization, it appears to move from a state of high disorder, or, in 
thermodynamic terms, high entropy, to a state of low entropy. The second law of 
thermodynamics contradicts such a change in an isolated system, and, in the simple ant 
system, it was observed that an initial increase in entropy might account for the eventual 
drop in entropy. Such increases in entropy, which enable the formation of organization, 
are the mainstay of non-equilibrium thermodynamics (Atkins, 1984; Prigogine, 1962, 
1984; Haken, 2000; and Schneider and Kay, 1995; Swenson and Turvey, 1992). In the 
next section, measures of constraint and spatial entropy are defined as tools for examining 
the construction and destruction of constraints in this self-organizing system. 
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The ant model will currently be 
used for three purposes: 1) Exploring the 
parameter space of the model and produce a 
set of phase diagrams to show how its 
behavior changes with differing parameter 
values; 2) Introducing the concept of useful 
work done by the system and show how this 
is affected by changes in the behavioral 
rules and initial conditions of the model; 3) 
Discussing the work done by the system in 
the language of statistical thermodynamics.   
 
Experimental Setup 
 

The spirit of this model is an 
extension of the work of Parunak and 
Brueckner (2001),  Kugler and Turvey 
(1987) and Gutowitz (1993). A basic 
simulation is set up as follows: A nest and 
some amount of food are placed in a space. 
All locations have zero levels of both food 
and nest pheromones. A conserved number 
of ants is placed in the system with varied 
spatial distributions. The system evolves as 
the ants move, drop pheromone, and 
transport food. An ant can hold one unit of 
food at a time and can take one of three actions: 1) move to one of eight adjacent locations 
(includes diagonal moves), 2) pick up a unit of food, and 3) drop a unit of food at a nest. 
At each time step some percentage of the pheromone present at each position 
“evaporates”, or is removed.  

 
Figure 1. Typical evolution of the ant system. 

(a) Bootstrapping – Gradient Creation: Ants move 
randomly out from the nest, creating a gradient of 
nest pheromones. (b) Structure Formation: Some 

ants find the food and begin following the nest 
pheromones while dropping food pheromones that 

food-seeking ants begin to follow. (c) Structure 
Maintenance: A stable path of both food and nest 

pheromones is established. As shown in the upper-
right corner, cycles that do not transport food can 

also form. (d) Re-exploration: Once all of the food 
has been transported to the nest the pheromones 

begin to evaporate and the ants disperse. 

In some experiments, ants have directionality—they can only travel to their 
forward five positions instead of choosing from all eight adjacent positions. This local 
directionality—present regardless of the state of the system—is an example of a context-
free constraint (Juarrero, 1999).  
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The direction of an ant is calculated 
after each step based on the 
previous and current positions. At 
time zero each ant chooses a 
random direction. In addition to 
this directionality, ants are given a 
behavior, in some experiments, that 
turns them around when they reach 
their goal—either the food-source 
or the nest. In the main set of 
experiments performed for this 
paper, the turnaround behavior and 
the ant directionality are successively turned off to observe the result on the ant-
pheromone structure formed when the system reaches a steady state. The turnaround and 
directionality behaviors were originally included to make the system more efficient at 
reaching a structured steady state, but these behaviors constitute information about the 
environment and it is central to this paper to observe the macroscopic effect of removing 
this information from the microscopic actors.  

 
Figure 2. Examples of possible next steps (in gray) for an ant 

according to the last step taken. In this case, ants have fixed 
context-free constraints preventing backwards movement. 

 

Each time step, ants measure a local pheromone level then choose a direction to 
step. For example, for an ant with directionality, pheromone levels are read from the 
forward five positions. The probability of moving to position j is given by:  
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where µj is the pheromone level at position j; α is a scaling exponent; β is a random base; 
and the denominator represents the total pheromone level in all possible next positions. 
The scaling exponent α increases the probability that the next position will be the one 
with the greatest pheromone level, whereas the random base β has the opposite effect. 
Typical values used in our experiments were α = 3, β = 1, and a maximum pheromone 
level of 511 at any one position. These parameters can be adjusted to tune the likelihood 
that an ant will explore for new food versus exploiting a found food source. The parameter 
β might be thought of as a temperature. By analogy to a physical system, when the 
temperature is high, each particle is highly agitated and the randomness of its motion is 
high. Any forces—e.g. electrostatic or gravitational—have to compete with this agitation 
for influence over the motion of the particles. Our β parameter effectively acts in the same 
way: high values of β can randomize the motion of the ants even in strong pheromone 
fields.   
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Constraint and Spatial Entropy Measures 
It is in the initial conditions and the relevant behavioral rules of the ants and pheromones, 
that we find the propensity of the system to organize into structure.  

As a system organizes, either through mechanisms of self-organization or 
through intervention by an external designer, components of the system are expected to 
lose degrees of freedom through the emergence of context-sensitive constraints (Juarrero, 
1999). In this system, work is performed on the ants as they lose directional degrees of 
freedom when they are informed by the pheromone field.  We measure this constraint in 
our model with a directional entropy. An ant that sees no pheromone gradient, which is an 
equal level of pheromone in all possible next positions, is said to be maximally ignorant 
with an ignorance level of 1. An ant that is constrained to move to one specific position on 
the next step would have an ignorance of 0. The Shannon entropy (Shannon, 1948a, 
1948b) of the probabilities of moving to each of the possible positions on the next step 
defines the ignorance for each ant 
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where pn is the probability of moving to position n, and N is the number of possible next 
positions. The denominator is used to normalize the value to the range [0,1]. The 
ignorance of a group of ants is defined as the average ignorance of all ants. 

Exploration of the parameter space of the model  

With any model, it is important to know how the parameters affect the overall system 
behavior. In this section we look at the three main parameters governing the model: 
pheromone evaporation rate; number of ants; noise or 'temperature' parameter β. When 
several model runs are averaged over, we determine the effect of varying these parameters 
by looking at the following metrics:  

Directional entropy (defined in the previous section, Experimental Setup). 
Directional entropy can be considered a measure of how much work is being performed 
on an ant. 

Mean-free-path of the ants. This is the average number of steps traveled by an 
ant between picking up and depositing a piece of food. A high mean-free-path value 
indicates that the ants are traveling large distances between picking up and depositing 
food; in this case, the system is unorganized—strong pheromone paths between food and 
nest have not yet been formed and the ants take many steps in moving between food and 
nest. Low values of mean free path indicate that the ants go almost directly from food to 
nest and back, without much deviation. 

Number of food pieces picked up in a model run. The higher the number of 
pieces of food taken from food-source to nest over a run, the more efficient the system has 
become at performing this task.  This is a measure of useful work performed. 
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The surface plots (figures 3 - 5) show the behavior of the system when the 
parameters are changed. A basic summary of these results is as follows: a low pheromone 
evaporation rate, a large number of ants, and a low temperature (though the temperature 
dependence is weak in figure 6) are required for organization to occur. Organization is 
measured in the plots by: low directional entropy; low mean-free-path (whose surface 
plot, though absent here, is very similar to that for the directional entropy); and a high 
number of food pieces collected. In each case, the organized state is seen as a transition to 
a trough or a peak in the surface defined over the parameter space. It can be seen that 
these transitions are fairly abrupt—the landscape is relatively flat but it rises or falls 
rapidly. We can think of these changes, from the unorganized state, as phase transitions. 

Figure 3 An exploration of the effect of evaporation 
rate and number-of-ant changes on the final average 
directional entropy of the colony. 

Figure 4  The effect of  changing the pheromone 
evaporation rate and the number of ants on the total 
food collected per ant. 

 

Figure 5 The effect of changing the temperature (noise parameter) 
and the number of ants on the average directional entropy. 
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The effect of the behavioral rules and initial conditions on the organization formed 

An interesting question to ask of a dynamical system, such as our ant model, is: what 
happens to the final state of the system, and its evolution to this final state, when 
behavioral rule changes, or changes to the initial conditions, are made? We look here at 
several rule settings and initial conditions. As a baseline experiment, we turn off the ant 
pheromone and the directionality and turnaround behavior. In this case, we have a 
population of 'random' ants, similar to a non-interacting gas. The ants still pick up food at 
the food-source and deposit it at the nest, but, along the way, they neither sense nor 
deposit pheromone. The baseline experiment is numbered zero; the other experiments we 
perform are as follows:  
Rule Changes: 1) Basic ants, 2) Basic ants with directional motion, 3) Basic ants with 
directional motion and turnaround behavior.  
Initial Condition Changes: 4) All ants begin at the nest; all are food-seeking, 5) Ants 
begin randomly distributed; all are food-seeking, 6) Ants begin randomly distributed; half 
are food-seeking; half are nest-seeking. 

The 'basic ant' indicated above is simply an ant with no directional behavior i.e. 
no directional rule or turnaround behavior when the ant reaches the food or nest. The three 
initial condition changes are all performed for ant systems in which the ants are equipped 
with their full set of rules i.e. directionality and turnaround. The purpose of these 
experiments is to begin to understand how much information—relevant to the 
construction of a stable and efficient final organization—is present in the initial conditions 
of the ants. As we add behavioral rules to the ants, the overall number of food pieces 
picked up increases—the system grows in efficiency at this task.  
 
The results for the total number of food pieces picked up are, for each experiment: 

Exp 0 Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 

4 8 2074 3367 4046 455 980 336 4608 2198 
 
The previous section showed evidence that when the colony is efficient at food 

collection, the ants have low directional entropy and mean-free-path and are organized 
into a tight structure. It follows, therefore, that the addition of relevant, context-dependent, 
rules results in the formation of a tighter colony structure and a greater potential for the 
system to organize to perform the task of food collection. 
 Changes in the initial conditions also result in striking differences in the 
capability of the colony to self-organize. Two factors were identified as displacements 
from equilibrium in our model. First, the behavioral rule that changes the ant state 
between food-seeking and nest-seeking after touching a nest or food patch, creates 
concentration gradients of differentiated ant types with reciprocal sources and sinks at the 
nest and food. This system partitioning occurs even as the total ant distribution remains 
equipartitioned in the space. The second displacement from equilibrium occurs in some 
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experiments when ants are initially biased to be either all food-seekers and/or 
concentrated at the nest or food source. With all ants in their food-seeking state and 
beginning at the nest, the overall number of food pieces picked up is large (as expected, 
experiment 4) is close to experiment 3)). When the ants are initially randomly distributed, 
the ability of the colony to organize is significantly reduced—the total number of food 
pieces picked up is much smaller for experiments 5) and 6) than for 4). 
 Experiments 1), 5) and 6) share an interesting feature: despite the low number of 
food pieces picked up, the system does stabilize to a kind of structure—small clusters of 
ants form throughout the space. These clusters are composed of both nest- and food-
seeking ants, one kind laying a pheromone trail attracting the other and, therefore, 
following the other. The result is a collection of tight loops and an organization that is 
totally inefficient at performing the task of food transportation. This loop formation is an 
example of useless, or pathological, self-organization.    

In an attempt to investigate a rule change that might rid the system of this 
pathological behavior, we limit the total pheromone that each ant can deposit between 
visits to the food and nest. The ants are given 15 units of pheromone and can, therefore, 
take 15 steps before their pheromone has depleted. When a nest-seeking and food-seeking 
and become caught in a loop, it will not be long before the pheromone of the loop is no 
longer reinforced and the ants move away to discover other pheromone trails. We look at 
the following two cases: 7) Basic ants with limited pheromone, 8) Basic ants with 
directional and turnaround behavior and limited pheromone. 

We also look at the system for ants which have directional behavior but which, 
instead of encountering a 3 cell 'wall' blocking their reverse path, encounter only one 
cell—the cell directly behind them. This softening of this constraint might be expected to 
result in more meandering ant behavior and, hence, less well-formed organization. 
Therefore, our final experiment is: 9) Basic ant with one cell directional and turnaround 
behavior. The number of food pieces gathered for these three experiments is as follows: 7) 
336, 8) 4608, 9) 2198. The effect of limiting pheromone is to increase the effectiveness of 
the resulting colony at food collection—the directional entropies are also lower than for 
the unlimited pheromone counterparts. Experiments 7) and 8) should be compared with 1) 
and 3). Experiment 9) confirms our suspicion that the ants meander more when they are 
less constrained.  

The results of the baseline experiment show that the case of no organization—the 
random ants are, by definition, incapable of forming structure—actually results in a 
greater overall amount of food picked up than the case in which ants drop and sense 
pheromone but they have no directionality. The reason for this is that the pheromone-
sensing ants form the above-mentioned pathological organization—an organization that 
almost completely prevents them from performing the task of transporting food. In 
summary, the results show that the greater the number of structurally-relevant context free 
constraints the ants possess, the better the final organization is at the task of food 
collection and the less likely the system is to self-organize into a structure that hinders 
food collection. A further behavioral modification, limiting the total pheromone that can 
be deposited per ant, limits this 'useless' self-organization.     
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