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Abstract. We present a method for systematically identifying neighbourhoods
that may face transportation diYculties during an evacuation. A classi® cation of
this nature oVers a unique approach to assessing community vulnerability in
regions subject to fast-moving hazards of uncertain spatial impact (e.g., urban
® restorms and toxic spills on highways) . The approach is founded on an integer
programming ( IP) model called the critical cluster model (CCM). An heuristic
algorithm is described which is capable of producing eYcient, high-quality solu-
tions to this model in a GIS context. The paper concludes with an application of
the method to Santa Barbara, California.

1. Introduction

The ® eld of regional evacuation modelling has evolved along a fundamentally
temporal line of inquiry, where research has centred on the problem of accurately
estimating the time it might take to clear a speci® ed zone of its population. This
focus was initially motivated by the perceived threat imposed by nuclear power
plants during the 1970s (WSA 1974 ), and the accidents at Pennsylvania’s Three Mile
Island in 1979 and Chernobyl in 1986 served to reinforce this emphasis. The general
approach involved prede® ning a circular emergency planning zone (EPZ) around
each nuclear site using a 10-mile radius (NRC 1980, Urbanik et al. 1980 ) and
subsequently pursuing an estimate of the time it might take to clear the zone. Early
static-analysis techniques for estimating network clearance time (WSA 1974, Stone
1983) have since been eclipsed by special-purpose transportation simulation models
capable of dynamically modelling evacuations on the scale of entire urban areas
(SheY et al. 1982, FEMA 1984, Hobeika and Jamei 1985, Pidd et al. 1996). A
number of these simulation models have become the basis for evacuation decision
support systems (Han 1990, Tufekci and Kisko 1991, de Silva et al. 1993, Hobeika
et al. 1994).

In the wake of this early evacuation research on nuclear power plants, a modelling
paradigm emerged (Southworth 1991, Urbanik and Jamison 1992). The standard
approach was to delimit an EPZ around a known hazard and subsequently apply
an evacuation simulation model to explore questions regarding the many factors
that might aVect network clearance time (e.g., routing, population distribution, road
and intersection capacity, human behaviour). This general approach proved very
useful and has been used to model the evacuation of communities at risk to chemical
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stockpile sites (Newsom et al. 1992 ), nuclear research facilities (Sinuany-Stern
and Stern 1993), dams (Southworth and Chin 1987), and hurricanes (Hobeika
et al. 1985).

A key concept that underlies this modelling approach is the notion of a credible
EPZ. A credible EPZ is a valuable spatial construct, as it provides a crisp answer
to the dual questions of who needs to be evacuated (population in the zone) and
where they need to be routed to reach safety (outside the zone). In a sense, it serves
as a formal agreement among emergency planners regarding the de® nition of a likely
evacuation. This allows analysts to move directly to issues related to estimating and
reducing the time it might take to clear a zone. As Sorensen et al. (1992) note,
delimiting a credible EPZ can be a signi® cant political and technical endeavour for
certain hazard types.

However, a problem arises when an analyst is faced with performing an evacu-
ation assessment for a region that is subject to a hazard with a high degree of
uncertainty in its spatial impact. In short, there are many hazards where the popula-
tion to be evacuated simply cannot be determined in advance. Urban ® restorms,
toxic spills on highways, and many other hazards routinely result in ad hoc evacuation
zones that are established at the time of the event. For this reason, hazards with a
high degree of spatial uncertainty pose an interesting modelling problem. We call
this problem the indeterminable EPZ problem (IEPZ) and state it as follows: How
can an evacuation assessment be performed when the population to evacuate is an
unknown (i.e., when a credible EPZ cannot be established in advance)?

As the IEPZ problem is a spatial problem, it represents a signi® cant opportunity
to utilize a GIS approach. The potential role for GIS in evacuation research has
been noted by a number of authors (Gatrell and Vincent 1991, Dangermond 1991,
Johnson 1992, Rejeski 1993 ), but little work has been done in this area to date. GIS
have been applied in generating alternative evacuation routes out of a given zone
(Dangermond 1985, Dunn 1992) and in managing the spatial data associated with
an evacuation decision support system (de Silva et al. 1993). In general, the wider
application of GIS in hazards research has focused on modelling the physical aspects
of hazards (Wadge 1988, Chou 1992, Shu-Quiang and Unwin 1992, Carrara and
Guzzetti 1995, Emmi and Horton 1995, Radke 1995) and not on potential evacuation
diYculties. Although evacuation vulnerability modelling is clearly related to GIS
natural hazards research, it’s more closely aligned with GIS research on modelling
human vulnerability and risk (McMaster 1988, Estes et al. 1987, Hodgson and Palm
1992, Burke 1993, Emani et al. 1993, Brainard et al. 1996).

The purpose of this paper is to describe a GIS approach to the problem of
identifying neighbourhoods that may face transportation diYculties during an evacu-
ation. A secondary concern is to demonstrate that the algorithm underlying this
approach is a candidate for addition to the spatial analytic toolbox of contemporary
GIS (Goodchild 1987, Burrough 1990, Fotheringham and Rogerson 1993). The paper
begins with a description of a methodological framework designed to address the
IEPZ problem that we call evacuation vulnerability modelling. A fundamental prob-
lem is identi® ed and formulated as an integer programming (IP) model. Solving this
IP model optimally is impractical for most real-world road networks, and we describe
a heuristic algorithm designed to produce eYcient, high-quality solutions to the
model in a GIS context. An application of the method is presented for Santa Barbara,
California, and the paper ® nishes with a conclusion and discussion of further research.
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2. Evacuation vulnerability modelling

An initial approach to addressing the IEPZ problem is to shift the emphasis
from a temporal to a spatial perspective. Rather than pursuing the question as to
the time it might take to clear a single zone under a particular hazard, regional
evacuation can be viewed as a generic process (Perry 1985) independent of any
hazard or zone. In other words, clearing people from an area can be viewed as a
process independent of any particular zone or hazardous event that might warrant
the evacuation. From this perspective, there would be an extremely large number of
potential evacuations in any given region. An interesting problem involves classi-
fying them regarding transportation diYculties that might arise during an urgent
evacuation (e.g., congestion).

Essentially, we require a measure of evacuation diYculty at each point in the
plane. One approach is to ® nd a zone for each point that (1) contains the point, (2)
is limited in size, and (3) represents the most diYcult evacuation for that point. If
this process was performed on a network data model at select points (i.e., inter-
sections), it would be possible to produce a ® eld de® ned along the network that
represents an upper bound on potential transportation evacuation diYculties.
Goodchild (1992 ) would consider this a process of generating a ® eld from a discrete
data model. A ® eld of this nature would aid in assessing vulnerability, as communities
that are unable to clear their immediate locale in a safe and timely manner may lead
to disastrous consequences in some hazard contexts (OFD 1992).

2.1. All possible evacuations
Regional evacuation is a human process that occurs at the level of the individual,

and it is assumed that there are a ® nite number of individuals in any de® ned region
at a given point in time. As such, a set theoretic view can be adopted, where an
evacuation is de® ned as any subset of a region’s population clearing its immediate
locale. The extent of the evacuation is thereby de® ned by the extent of the population
involved. With time ® xed (time-slice), there are a ® nite number of potential evacu-
ations, as there are a ® nite number of subsets of any ® nite set. The cardinality of
this set is given in equation (1) where n is the population of the study area and E is
the set of all evacuations.

|E|= �
n

i=1A n

i B (1 )

For an area with a population as small as 50, there would be greater than
1015 potential evacuations (population subsets) at any point in time. A reduction
of this set is required to move this problem into a computationally tractable
domain (GIS).

First, the case where the evacuees are not in proximity is highly unlikely, and
contiguity can be added to the de® nition of a valid evacuation. That is, the population
must come from a contiguous area. Second, the most critical population to evacuate
in the context of fast-moving hazards of uncertain spatial impact is the population
within immediate proximity to the origin of the event. To focus on these frequent
(Sorensen et al. 1987) micro-evacuations, a size limit can be included in the de® nition
of a valid evacuation. Lastly, it’s impossible to geo-reference all individuals within a
study area, and a common aggregate geographic representation of population must
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Figure 1. An example valid evacuation (black nodes) with two exits (bold arrows).

be employed. Contiguity, size, and aggregation all serve to signi® cantly reduce the
space that comprises all possible evacuations.

A common spatial data model for a transportation problem of this nature is a
planar network, where the arcs represent road segments and the nodes represent
street intersections. One approach to aggregating population in GIS network analysis
studies is to assign and aggregate residents to their nearest street intersection using
Thiessen polygons centred on the street intersections. An example network data
model with one potential evacuation (black nodes) is given in ® gure 1. We will refer
to any arc connecting the set of nodes in the evacuation to the rest of the network
as an exit and the set of all exits for a particular evacuation as the exit choice set.
An evacuee would be free to choose any arc in the exit choice set as a bridge to
s̀afety’. In graph theory, this set is commonly referred to as a cut-set, as the removal
of this edge set results in a separation of the graph into two separate sub-graphs.
At this point, the space that comprises all possible evacuations is de® ned as the
set of all contiguous node subsets (i.e., intersections or Thiessen centroids) in a
transportation network that are less than a given size.

2.2. Evacuation diYculty
Accurately estimating network clearance time for each evacuation using a simula-

tion model is not possible in this context, as there are simply too many cases.
However, one viable alternative is to develop a static index estimate of evacuation
diYculty. To avoid confusion with estimating network clearance time, we will refer
to this index as an evacuation diYculty index. Evacuation diYculty is de® ned as an
estimate of the relative eVort required to clear an area of its population. This concept
embodies a composite of the potential for congestion, accidents, and general diYculty
in deploying response vehicles into the evacuation zone. There are numerous
approaches to operationalizing a concept like evacuation diYculty, but for our
purposes, we will simply de® ne it in equation (2) where P is the population involved
and C is a measure of the capacity of the exit choice set.

P/C (2 )

It is clear that this de® nition is a highly simpli® ed view of what is undoubtedly
a complex social, spatio-temporal process. It should be noted that this method is a
comparison of starting scenarios and not predicted outcomes. In other words, the
comparison is between initial conditions, rather than an attempt to predict the
outcome of an actual evacuation.
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2.3. Spatial evacuation vulnerability
With the space that comprises all possible evacuations de® ned and an approach

to scoring their potential diYculty, the focus can shift to developing a systematic
spatial classi® cation method. One approach is to inquire as to the worst-case (i.e.,
maximum diYculty) that each node in a network might be involved in, less than a
certain size. We call this worst-case for a particular node (and size limit) its spatial
evacuation vulnerability . The primary task is, then, to map the local variation in
evacuation vulnerability throughout a network due to the unique geographical
setting of individual nodes.

The de® nition of ẁorst-case’ in this context refers to the maximum value for a
given diYculty measure and not the actual worst-case that might occur. For example,
an actual evacuation could easily be more diYcult due to the loss of exits (e.g.,
hazard or stalled vehicle), signi® cant imbalances in the number of evacuees utilizing
various exits, or convergence on the hazard site by response personnel and local
citizens. The de® nition of worst-case utilized in this paper is simply an attempt to
systematically reveal the geographical context in which an evacuation might take
place.

An essential element in the de® nition of spatial evacuation vulnerability is the
method for limiting evacuation size. In exploring the local neighbourhood of each
node, it’s necessary to formalize the notion of l̀ocal’. We have identi® ed ® ve
approaches to achieving this end: Euclidean distance, network distance, population,
area, and node count ( ® gure 2). In this paper, node count is utilized as the size limit,
which assumes that network connectivity relations are the most critical component
in de® ning evacuation vulnerability. This approach is particularly useful in areas
subject to urban wild® res where there are very long dead-end roads extending into
the urban/wildland interface. If Euclidean distance is utilized to limit evacuation size
in this context, these dead-end roads appear as viable exits until the distance had
been increased beyond a neighbourhood scale. It is anticipated that these various
approaches to limiting evacuation size will have application in diVerent hazard and
network contexts, but we leave a thorough investigation of this issue for further
research.

Figure 3 provides a theoretical example of how spatial evacuation vulnerability
would be de® ned for a node, given that node count is the approach to limiting
evacuation size. For this example, the evacuation node set must be less than or equal
to six nodes. The ® gure shows three potential evacuations that all contain the node
labelled A (note: There are many more than three node sets involving node A) .
Assume that each node has 100 residents, and each arc has one lane in each direction.
The nodes involved are shown in black and the exits are shown as bold arrows. The

Figure 2. Five approaches to limiting evacuation size.
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Figure 3. Three example evacuations (shaded) less than or equal to six nodes that all involve
the population assigned to node A.

area assigned to each node (square Thiessen polygons) is shown with dashed lines,
and the area to be cleared is shaded. In case 1, there are 400 evacuees and 2 exits
(200 evacuees per exit lane). In case 2, there are 600 evacuees and three exits (200
evacuees per exit lane), and in case 3 there are 600 evacuees and only two exits (300
evacuees per exit lane) . For this reason, case 3 represents node A’s worst-case
(maximum population per exit lane) out of the three cases (and in general as well ),
and node A’s spatial evacuation vulnerability value would be set to 300 people
per lane.

The classi® cation of a region based on spatial evacuation vulnerability can then
be achieved by iteratively posing the same query to each node in the network. An
outline of this process is now oVered. For a network with population assigned to its
nodes and lanes on its arcs:

1. Select a method for limiting evacuation size and set the required parameters.
2. For each node, satisfy the following spatial query:

`What is the most diYcult (worst-case) evacuation starting scenario within
which residents at this node might participate, where the evacuation is
smaller than the speci® ed size limit?’

3. Assign each arc in the network the higher spatial evacuation vulnerability value
of its two end nodes.

4. Classify the arcs according to their spatial evacuation vulnerability value.

3. The critical cluster model

3.1. Backgrou nd
The model formulated in this section represents the basis of our approach to

modelling evacuation vulnerability. We will refer to the problem as the critical cluster
problem (CCP) and the model formulated to solve it as the critical cluster model
(CCM ). Each individual node in a street network represents a separate optimization
problem under this model. The process is akin to asking each node in the network
the question posed in step 2 above. The answer to this question varies spatially as
nodes do not have equivalent surroundings.

The critical cluster problem involves ® nding potentially the most diYcult evacu-
ation starting scenario associated with a pre-speci® ed node, which we will call the
root node. For a given root node and speci® ed cluster size in nodes, there is at least
one cluster of nodes in a network that contains the root node and maximizes the
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Figure 4. A network and a corresponding plot of evacuation diYculty for the black node.

ratio of cluster population to exit lanes. Solving the critical cluster problem involves
® nding the most extreme of these clusters for a given root node across a range of
cluster sizes from one node up to a speci® ed size limit. This optimal cluster (i.e., the
cluster containing the root node that has the highest average population per exit
lane) is referred to as the critical cluster. An example of a critical cluster is given in
® gure 4 for the black node. To simplify this example, each node has a population of
1 and each arc has one lane in each direction. Note that for the example root node,
the critical cluster occurs at a cluster size of ® ve; the point where the diYculty
measure reaches its maximum.

The problem of ® nding a node’s critical cluster falls within the broad category
of graph or network partitioning problems. A partition is a subset of nodes within
a larger network, and an optimal partitioning maximizes or minimizes some speci® ed
criteria related to the partition. In this context, we are only interested in contiguous
partitions which we refer to as clusters. A related problem that is addressed widely
in the operations research literature is the graph partitioning problem (Kernighan
and Lin 1970, Johnson et al. 1989, Jin and Chan 1992, Laguna et al. 1994, Pirkul
and Rolland 1994). This problem was originally stated by Kernighan and Lin (1970,
p. 291) as:

. . . given a graph G with costs on its edges, partition the nodes of G into subsets of no
larger that a given maximum size, so as to minimize the total cost of the edges cut.

The graph partitioning problem arises when the goal is to divide a graph into
separate sub-graphs with a minimum number of connections between the resultant
sub-graphs.

This problem is related to the critical cluster problem and represents a valuable
starting point from which to derive a formulation. The critical cluster problem can
be stated in similar terms as:

Given a graph G with costs on its edges and weights on its nodes, ® nd a contiguous
partition less than a given maximum size that contains a pre-speci® ed node i*, so as to
maximize the total weight of the partition relative to the total cost of the edges cut.

Within the context of the diYculty measure presented in § 2, node weight is
population, and edge cost is the number of lanes. Note that an edge may not have
the same number of lanes in each direction.
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3.2. Formulation
To specify the critical cluster unambiguously, given a graph G= (N, A ) with costs,

cij ( lanes), on its arcs and weights, a i (population), on its nodes, we are asked to
partition N into two node sets N1 and N2 such that N=N1nN2 , N1mN2=B,
where N1 is a contiguous partition less than or equal to size s (in nodes) that contains
a root node i*, so as to maximize the total weight of N1 relative to the total cost of
the arcs cut between N1 and N2 . This can be formulated as an integer programming
(IP) problem:

Objective: (3 )Maximize:
�
i

aix i

�
i
�
j

cijy ij

Subject to: x i Õ x j < y ij Y i, j and Y j , i × N (4 )

�
i
x i < s (5 )

x i*=1 (6)

x i , y ij , × {0,1} Y i, j × N (7 )

Where: x i=G1, if node i is in N1

0, otherwise

yij=G1, if node i is in N1 and node j is in N2

0, otherwise

ai=weight of node i (population)
cij=cost of arc ij ( lanes)
s=maximum size (in nodes) of N1

i*=index of root node × N1

In this formulation for the CCM, the objective function (3 ) maximizes the ratio
of the partition’s total weight to the total cost of the arcs with one node in the
partition and one node outside the partition. Constraint (4) ensures that if node i is
in the partition and node j is not, then arc y ij must be equal to 1, as it is a connection
between the partition containing node i* and the rest of the graph. If an arc’s yij

value is equal to 1, then the arc’s number of lanes is included in the denominator of
the objective function and the total number of exit lanes for the partition. Constraint
(5) limits the search to partitions less than a speci® ed size in nodes. Constraint (6)
states that node i* must be in the partition node set N1 . Constraint (7) ensures that
all y ij and xi variables are binary integer variables.

There is also the condition that the critical cluster be contiguous. If we solve the
above problem and the optimal critical cluster is, in fact, a multiple cluster, then
additional constraints are required to ensure contiguity. Note that this problem is
also a nonlinear problem, as the objective involves optimizing a ratio of two terms
each with variable terms. Although we have developed an involved process for
deriving optimal solutions to the CCM, ® nding guaranteed optimal solutions is
impractical for most real world street networks. Because the goal is to solve the
CCM in a practical GIS application context (i.e., arbitrarily large street networks in
user time), the next section describes a heuristic algorithm designed to produce good
solutions to this model in an eYcient manner.
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4. Heuristic algorithm

4.1. Design
Conceptually, the heuristic g̀rows’ a cluster from a speci® ed root node in a

network in an attempt to locate the node’s critical cluster. Beginning with the
speci® ed node, the heuristic iteratively adds one of the currently adjacent nodes to
the existing contiguous cluster. In constructing a cluster of nodes from a root node,
there is one signi® cant decision to make at each iteration: which adjacent node
should be added next? A node must be assessed by the population it will add to the
cluster, as well as its net eVect on the cluster’s total exit capacity. In the context of
this paper, we have de® ned an arc’s capacity simply to be its number of lanes. The
equation for a node’s gain regarding the objective value is given in equation (8):

Pk+1

Ck+1
=

Pk+ai

Ck+ (o i Õ ci )
=gi

Pk

Ck
or gi=

Ck (Pk Õ a i )

Pk (Ck+ (o i Õ ci ))
(8 )

Where: k=index of iteration
g i=gain in the objective if node i is selected
Pk=total population of cluster at iteration k
Ck=total exit capacity of cluster at iteration k
a i=population at node i
o i=new exit capacity node i would open, if selected
ci=existing exit capacity node i would close, if selected

Figure 5 shows an example of growing a cluster from a root node in an attempt
to ® nd the critical cluster. To simplify this example, each node has a population of
1, and each arc has 1 lane in each direction. At step 1, the cluster began as one node
(root node shown in black) with three exit lanes, giving it an objective value of 1/3.
As there are three lanes leading out of the cluster, there are three adjacent nodes to
evaluate with the above calculated gain value. At step 2, the node that most increased
the objective value was the one to the left, and it is selected to give the cluster an
objective value of 2/2=1. This added node was as isolated node (i.e., dead-end street)
except for its connection to the root node. The process continues, where any adjacent
node to the entire cluster is a candidate node to be added in the next iteration.

As this example relied on selecting the adjacent node that most increased the
objective value, it is a greedy approach to ® nding the critical cluster. A greedy
approach can rapidly lead to local optima, and it is likely that the best cluster found

Figure 5. Growing a cluster from a root node (black node) in an attempt to ® nd that node’s
critical cluster, where each node has unit population and each arc has one lane in
each direction.
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by this approach will not be optimal. However, solution quality can be greatly
improved by modifying the procedure to use a semi-greedy approach. In a semi-
greedy approach, an alpha parameter (expressed as a percentage) is used to increase
the possible list of adjacent nodes that might be selected to add to the cluster. In
short, the improvement factor for all adjacent nodes is calculated using equation (8),
and all adjacent nodes are scanned again to produce a list of only the ones that are
greater than alpha per cent of the best option. This implies that nodes with gain
values less than the best node may be possible candidates for selection. A random
selection is made from this list of candidate additions at each step. For this reason,
successive runs of the heuristic for a given root node will likely result in diVerent
results. A second parameter (starts) can be added to control the number of times
each node is run, where the best overall objective value is saved.

In addition to semi-greedy selection, we add the concept of adaptiveness found
in the GRASP approach (Laguna et al. 1994). Adaptiveness is an answer to the
notion that selecting one adjacent node can change the gain value of other adjacent
nodes. In short, selecting one node aVects the relative scores of all other adjacent
nodes. This has a signi® cant impact on the complexity of the algorithm, as it implies
that the gain values for all adjacent nodes must be recalculated after every node
selection. In this way, the nodes are thought to adapt their respective gain values to
the changing state of the cluster.

4.2. Implementation
4.2.1. GIS considerations

The GIS query primitive that this algorithm requires is the forward star (Evans
and Minieka 1992). A node’s forward star is the set of arcs directed away from the
node, which facilitates the retrieval of the set of immediately adjacent nodes. Figure 6
shows two examples of a forward star, one with undirected arcs (Case A) and one
with directed arcs (Case B). The forward star query is utilized in many GIS network
analysis algorithms like shortest path, routing, and tracing.

As an example, ESRI’s ARC/INFO 7.0 supports the forward star query through
the Arc Macro Language (AML) command SHOW with the ADJACENT and
ADJACENT NEXT options. The ADJACENT option returns the number of nodes
that can be reached via the undirected forward star, where subsequent calls to
SHOW with the ADJACENT NEXT option return the node ids. Additional AML
code can be added to remove nodes when considering street directionality (arc
attribute). Although our ® rst attempt to implement this heuristic relied on this
approach, AML is an interpreted macro language and does not allow direct access
to the network data structure. As such, it proved too slow for our computational

Figure 6. Two cases of a forward star (bold arcs) for the centre node.
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experimental design, as we wanted to be able to grow many clusters from each node
in a network of more than 5000 nodes using a variety of alternatives regarding the
decision of which node to add at each step. For this reason, we implemented our
own forward star network data structure (Evans and Minieka 1992) in a stand-alone
C program and loosely coupled the program with ARC/INFO by exporting the
network to text and importing the heuristic results back into ARC/INFO. In an
environment where a software engineer has access to the internals of the GIS network
data structure, the forward star query could be optimized, and the heuristic could
be run in user-time within the GIS. A compromise between these two engineering
extremes is ESRI’s ARCVIEW 3.0, which has support for the forward star query
through a dynamic link library (DLL) that can be called directly from a compiled
C program (Honeycutt 1996 ).

4.2.2. Speci® cation
The implementation of the heuristic takes as input a textual representation of a

network and a set of parameters, whereby it produces an output ® le of node id’s
and their associated spatial evacuation vulnerability values. The parameters of the
program are given in table 1.

There are two conditions that must be met before a network can be considered
valid for an application of the heuristic: contiguity and global exit. Contiguity implies
that there must exist at least one path between every pair of nodes in the network,
and global exit implies that at least one node in the network be designated as an
exit from the entire network. A global exit may not be selected as a component node
of any cluster, and as most digital road networks are subsets of a larger network, it
should be clear which nodes represent exits from the network.

The main control logic behind the algorithm is given in ® gure 7 as pseudocode.

Figure 7. The pseudocode for the heuristic algorithm.
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Given a size limit, the algorithm sequentially runs through the nodes in a network,
in an attempt to ® nd the critical cluster for each node. The only required parameter
is the size limit, as the subsequent parameters are only used to improve the quality
of the solutions produced by the algorithm. The total cluster weight over the number
of exit lanes is referred to as the weight/cost value.

An important bene® t of the structure of a critical cluster, in general, is that all
the nodes that comprise one must have a critical cluster weight/cost ratio at least as
large as the original critical cluster’s. This means that when a maximum cluster is
found for a particular root node, the nodes that comprise this cluster that have a
critical cluster weight/cost value less than this critical cluster’s value can automatically
be raised up to this new value. It is still possible, however, for a subset of these
component nodes to have an even higher critical cluster value. This improvement
strategy is listed as step (10).

4.3. Evaluation
To test the performance of the heuristic algorithm, optimal solutions to the CCM

were derived for 40 randomly selected nodes from 4 real-world street networks (10
each) at three evacuation size limits 10, 25, and 50 (120 problems), where the networks
ranged in size from 200 to 300 nodes. The equation for evaluating the per cent from
optimal for a node and size limit is:

O Õ B

O
(9 )

where O is the optimal solution and B is the best solution achieved by the heuristic.
Table 2 shows the mean per cent from optimal for the 120 problems for each
combination of the semi-greedy parameters alpha and starts. A high alpha (e.g., near
1) constrains the growth of the cluster to greedy, where lowering alpha results in
progressively ẁilder’ cluster growth. Note that for a starts of 1 (row 1), the solution

Table 1. Program parameters.

Name Range Description

Size limit 1 . . . n Õ 1 The size limit (in nodes) to terminate growth
Alpha 0 . . . 1 The semi-greedy percentage parameter
Starts 1 . . . x The number of times to start the heuristic from a root node

Table 2. Mean percentage from optimal varying alpha and starts ( 120 problems per cell ).

alpha
Starts 0 9́75 0 9́50 0 9́25 0 9́00 0 8́75 0 8́50 0 8́25 0 8́00 0 7́75 0 7́50

1 12 0́7 10 5́3 11 2́1 11 6́1 11 0́1 12 6́9 12 0́4 15 1́4 15 4́2 17 6́7
2 10 5́7 8 5́6 9 3́2 9 1́4 10 2́3 9 5́2 10 2́7 11 1́8 13 0́6 11 9́3
4 9 5́3 7 1́3 8 1́6 7 7́5 7 4́7 8 0́8 8 0́3 8 5́1 9 9́7 8 5́9
8 7 7́2 6 1́2 5 9́2 5 0́8 6 7́3 5 9́2 7 3́5 6 8́2 6 6́5 8 0́4

16 7 7́2 6 1́2 5 9́2 5 0́8 6 7́3 5 9́2 7 3́5 6 8́2 6 6́5 8 0́4
32 7 8́1 5 2́5 4 9́5 4 2́9 4 3́4 4 5́3 4 4́5 5 0́6 5 0́2 5 0́2
64 6 5́8 4 8́5 4 4́8 3 7́7 4 3́2 3 8́4 4 1́5 4 2́ 3 8́1 3 9́3

128 6 5́8 4 7́4 4 1́3 3 9́5 3 6́9 3 8́7 3 6́1 4 0́2 2´99 3 7́2
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quality decreases as alpha is decreased and the cluster growth gets wilder. Also, for
all columns, solution quality improves as starts is increased. The best overall com-
bination occurred at an alpha of 0 7́75 and a starts of 128, where the average
percentage from optimal was 2 9́9. For our sample set of nodes, this implies that the
best combination for high solution quality is moderately wild cluster growth and a
large number of starts.

In evaluating the solution quality of the heuristic, it is important to keep in mind
the intended purpose for the results. The goal is to produce an evacuation vulnerabil-
ity map with a particular classi® cation scheme within a user time frame. There are
two additional concepts that aVect the required heuristic solution quality necessary
to produce an evacuation vulnerability map. Figure 8 shows how a relatively poor
performance (17 5́ per cent from optimal ) of the heuristic for a particular node may
not result in a misclassi® cation in the output map for that node. This implies that
the number of desired output map classes in¯ uences the required heuristic solution
quality to produce a high quality map. The second concept that obviously in¯ uences
the required heuristic solution quality is the desired heuristic classi® cation accuracy
of the output map. In other words, an output map within 99 per cent of the nodes
classi® ed correctly will require more computational eVort than a map within 90 per
cent classi® ed correctly.

Putting these two concepts together introduces two additional parameters to the
production of an evacuation vulnerability map: desired class granularity and heuristic
classi® cation accuracy. As solution quality can be traded for time, we want to select
the avenue that results in solution quality suYcient to produce the desired map
classi® cation accuracy in the least amount of time. This implies that a two class map
(e.g., high vulnerability and low vulnerability) with 90 per cent of the nodes classi® ed
correctly will undoubtedly take a fraction of the time it would take to produce a
5 class map with 99 per cent of the nodes classi® ed correctly.

To gain insight into the relationship between solution quality and classi® cation
accuracy, a simple experiment was devised. A parameter was added that de® nes the
number of classes of the ® nal output map, where the classes are de® ned as ® xed-
intervals between 0 and the highest optimal value across all nodes for a particular
evacuation size limit. This facilitates a comparison between the class of the optimal
solution for a given node and the class assigned by the heuristic. A node is considered
either correctly or incorrectly classi® ed by the heuristic. The overall classi® cation
accuracy can be expressed as a per cent de® ned as the total number of correctly
classi® ed nodes divided by the total number of nodes (120). Table 3 shows the values
of alpha and starts necessary to produce a map at speci® ed levels of classi® cation
accuracy while varying the number of classes. Producing a 5 class map with 99 per
cent of the nodes classi® ed correctly was deemed impractical from a computational

Figure 8. Poor heuristic results for a node may not result in a misclassi® cation.
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Table 3. Required (alpha, starts) pairs to produce a map at a speci® ed heuristic classi® cation
accuracy for a speci® ed number of classes.

Node classi® cation accuracy (per cent)

No. of classes 90 95 97 5́ 99

2 (0 9́5, 1 ) (0 9́5, 1) (0 9́5, 1) (0 9́5, 8)
3 (0 9́5, 1 ) (0 9́5, 1) (0 9́5, 8) (0 9́5, 16)
4 (0 9́5, 8 ) (0 9́5, 16) (0 7́75, 64) (0 7́75, 256)
5 (0 9́0, 32 ) (0 7́75, 64 ) (0 7́5, 512) impractical

Figure 9. The relation between arc and node classi® cation accuracy.

perspective, as producing a map with 97 5́ of the nodes classi® ed correctly required
512 starts of the heuristic at each node in the network.

One ® nal point worth taking up before proceeding to the presentation of the
method in an example case-study is arc classi® cation accuracy. As described in § 2,
after the nodes of a particular network have been classi® ed, the vulnerability level
of an arc is de® ned to be the worst-case vulnerability level of its two end nodes. This
implies that the classi® cation accuracy of an arc depends on the classi® cation
accuracy of its two end nodes. Figure 9 shows the eight feasible cases that may occur.
On the left is a table for the cases where the vulnerability level of node 1 is greater
than that of node 2 and the converse. For example, the upper left corner shows that
if node 1’s vulnerability level is greater than node 2’s and node 1 is correctly classi® ed
then, Ỳes, the arc will be correctly classi® ed’. A more interesting table on the right
side of ® gure 9 shows that when the vulnerability levels of node 1 and node 2 are
equal (a highly likely case), then there is only one case where the arc will not be
correctly classi® ed. In short, the classi® cation accuracy of the arcs in a evacuation
vulnerability map will always be higher than the classi® cation accuracy of its nodes.
As the ® nal map is a plot of the arc vulnerability levels, this is good. Unfortunately,
it is impractical to empirically assess the arc classi® cation accuracy of the heuristic
because this requires that optimal solutions be known for a very large number of
nodes in a network. However, knowledge of this factor allows one to stipulate that
the classi® cation accuracy of a particular map exceeds the value of the map’s node
classi® cation accuracy (e.g., heuristic classi® cation accuracy greater than 95 per cent).

5. Example case study: Santa Barbara, California

In the last few decades, the residents of Santa Barbara, California have endured
toxic spills, ® restorms, ¯ oods, and other hazards that have resulted in numerous
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evacuations. In addition to these fast-moving hazards, whose resulting evacuations
could not have been delimited in advance, Santa Barbara is an ideal region to
examine regarding evacuation vulnerability due to its wide variety of street patterns
and residential con® gurations. This section uses Santa Barbara as a sample region
to perform an example case study to highlight some of the issues that arise in a
practical application of the method described in the prior sections.

5.1. Preparation
An initial hurdle in performing this study involved acquiring the necessary data.

There are essentially two classes of geographic information required to perform a
case-study, given the diYculty measure presented in § 2: streets and population. Data
regarding population for the Santa Barbara area was acquired from 1990 Census
Tiger ® les, and data on the area’s roads was provided by Navigation Technologies
(NavTech). Census Tiger street data would also suYce, but we found NavTech’s
data to be of a higher quality.

The data preparation for a study is minimal, as the model requires that all nodes
have a representative population and all street segments have the number of lanes
in each direction. The most involved step was transferring the population from the
census data blocks to the nodes of the Navigation Technologies data. One approach
to this process is depicted in ® gure 10, where Thiessen polygons are generated around
the nodes of the street coverage and overlayed with the census Tiger blocks. The
polygon f̀ragments’ are then each assigned to a node based on their population. A
fragment’s population is the fraction of the area within the block multiplied by the
block’s population. The shaded pieces in ® gure 10 would be assigned to the node in
the upper left. Flowerdew and Green (1992 ) have researched this areal interpolation
problem (zone-to-zone), and the reader is referred to this work for a complete review.

5.2. Analysis
Aside from selecting a measure of evacuation diYculty, the main parameter to

the procedure is the size limit (s). Assuming that the measure of diYculty is the one
described in § 2, and node count is the selected means for limiting size, a researcher
must decide what node count limit to place on the process. In the cases of urban
wild® res and toxic spills, the most critical area to clear is the immediate vicinity of
the hazard. For the purposes of this example study, this was taken to be a size limit
of 25 nodes. As node count is the size limit, v̀icinity’ in this case refers to network

Figure 10. Thiessen polygon population interpolation process.
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Figure 11. An evacuation vulnerability map for the Santa Barbara vicinity.

Figure 12. An evacuation vulnerability map of western Santa Barbara.

vicinity and not Euclidean distance. In other words, two nodes that are relatively
far apart in Euclidean distance are considered c̀lose’ if they are connected by a road
because the potential for interaction between two evacuees starting from each of
these nodes is relatively high.
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Figure 11 shows the results of producing a complete map for the Santa Barbara
vicinity. The thematic map unit is the number of people per lane in an road segment’s
worst-case evacuation (i.e., maximum diYculty value less than 25 nodes).
Conceptually, the map is a discrete surface de® ned only along the network. Because
nearby road segments are often in the same spatial evacuation vulnerability class,
groups of segments organize themselves into perceivable vulnerability clusters. We
call these clusters evacuation sheds, and they represent interesting areas for further
inquiry. However, at this mapping scale the network is too dense to reveal why
certain neighbourhoods are highlighted.

Figure 12 shows a larger scale view of an area just west of the Santa Barbara
City limits with many evacuation h̀ot spots’. Communities (A) through (D) all have
more than 500 residents and only one exit lane. For this reason, there is greater
potential for traYc congestion to impede an urgent evacuation of these neighbour-
hoods. Despite the relatively large number of exits in the larger community (E), the
population density in this area is so high that the algorithm had no problem ® nding
numerous potential evacuations where the number of residents per exit lane might
be greater than 500.

Figure 13 shows a larger scale view of downtown Santa Barbara. A clear evacu-
ation vulnerability corridor is visible along the primary artery (i.e., six lane freeway
shown in gray) through this area. This is partly due to the numerous dead-end streets
created by the construction of the freeway in addition to the relatively high residential
density along this route. A prominent evacuation shed (A) on a relatively sharp
corner of the freeway appears in red. As this neighbourhood is adjacent to the
freeway, it has almost no connecting streets along its north-east side. Also, on its
south-west side of this neighbourhood is a steep hillside (not shown) that results in
even fewer connecting streets. Finally, its residential density is higher than other
neighbourhoods in this area.

5.3. Discussion
As census data was used to assign population to the nodes on the network, these

maps can be considered a timeslice of Santa Barbara’s population at night. As in
most urban areas, the population distribution during the day, night, and peak
commuting hours varies considerably. In addition to population movement, these
maps were constructed at one evacuation size limit (25 nodes). Table 4 shows a more
comprehensive approach to a case-study, where three time periods (daytime, rush-
hour, night-time) are combined with three size limits (25, 50, 100) to produce nine
maps for exploring spatio-temporal evacuation vulnerability in this area. Parrot and
Stutz (1991) have noted the importance of modelling daytime shifts in population
in the context of emergency planning, and they provide one example approach for

Table 4. A matrix to produce nine evacuation vulnerability maps for a study area.

Time of day (population)
Evacuation
size limit day-time night-time rush hour

25 1 2 3
50 4 5 6

100 7 8 9
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Figure 13. An evacuation vulnerability map of downtown Santa Barbara.

San Diego County. Glickman (1986 ) and Goodchild et al. (1993) have also addressed
this problem from diVering perspectives, but as Southworth (1991 ) notes, this is an
area in need of further research.

6. Conclusion

The primary objective of this research was to propose one approach to the
problem of performing regional evacuation analyses in areas subject to fast-moving
hazards of uncertain spatial impact. When a region is subject to a hazard of this
nature, it is impossible to delimit a credible emergency planning zone (EPZ) to apply
any one of a host of contemporary evacuation simulation models. To overcome this
problem, a new method was presented that allows a researcher to focus on the spatial
variation in evacuation diYculty across a landscape. This facilitates a systematic
geographical approach to studying community evacuation vulnerability.

Evacuation vulnerability modelling represents a proactive perspective for
emergency planners and other parties that may be interested in disaster mitigation
and preparedness. These maps can be viewed as a new vulnerability layer for hazards
research. Risk can be viewed as a function of hazard and vulnerability (Alexander
1993), so if a ® re hazard map represents the hazard component of risk, then an
evacuation vulnerability map could be overlayed with this map to produce a risk
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Figure 14. The potential role for evacuation vulnerability maps in risk mapping.

map. This opens the door to integrating evacuation vulnerability modelling with the
numerous GIS hazard models that have been developed. Figure 14 shows example
hazard layers and how they might be combined with an evacuation vulnerability
layer to explore issues of risk.

Another interesting area of research that needs to be addressed in this context is
developing new approaches to estimating the whereabouts of population in a city
at a relatively ® ne-grained level (e.g., census block) for ® xed points in time. This
problem is extremely complex, as population ¯ uctuations range from low-frequency
seasonal migrations to the ǹoise’ of special events.

Also, there are also a host of interesting research questions and problems to
address in developing new measures of evacuation diYculty and spatial evacuation
vulnerability. First, this paper presented only one measure of evacuation diYculty,
but there is a clear need to develop additional measures that take into consideration
other factors that aVect evacuation diYculty (e.g., number of vehicles, special popula-
tions) (Vogt and Sorensen 1992). These measures might be considered in the larger
family of accessibility measures where they refer to the accessibility of a population
subset out of a neighbourhood. Second, the modelling decision of how to limit
evacuation size is an interesting area for further research. This paper presented ® ve
approaches that may each have application in diVerent hazard or network contexts.
An investigation into the strengths and weaknesses of these various approaches for
diVerent hazard and network contexts would be a valuable study.
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